Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter

نویسندگان

  • Andrea Cerioli
  • Alessio Farcomeni
  • Marco Riani
چکیده

The Forward Search is a powerful general method for detecting anomalies in structured data, whose diagnostic power has been shown in many statistical contexts. However, despite the wealth of empirical evidence in favour of the method, only few theoretical properties have been established regarding the resulting estimators. We show that the Forward Search estimators are strongly consistent at the multivariate normal model. We also obtain their finite sample breakdown point. Our results put the Forward Search approach for multivariate data on a solid statistical ground, which formally motivates its use in robust applied statistics. Furthermore, they allow us to compare the Forward Search estimators with other well known multivariate high-breakdown techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

A Simulated Annealing Algorithm within the Variable Neighbourhood Search Framework to Solve the Capacitated Facility Location-Allocation Problem

In this study, we discuss the capacitated facility location-allocation problem with uncertain parameters in which the uncertainty is characterized by given finite numbers of scenarios. In this model, the objective function minimizes the total expected costs of transportation and opening facilities subject to the robustness constraint. To tackle the problem efficiently and effectively, an effici...

متن کامل

Projection based scatter depth functions and associated scatter estimators

A class of projection based scatter depth functions is introduced and studied. In order to use the depth function effectively, some favorable properties are suggested for the common scatter depth functions. We show the proposed scatter depth totally satisfies these desirable properties and its sample version possess strong and √ n uniform consistency. Under some regularity conditions, the limit...

متن کامل

Stahel-Donoho estimation for high-dimensional data

We discuss two recently proposed adaptations of the well-known StahelDonoho estimator of multivariate location and scatter for high-dimensional data. The first adaptation adjusts the calculation of the outlyingness of the observations while the second adaptation allows to give separate weights to each of the components of an observation. Both adaptations address the possibility that in higher d...

متن کامل

A natural robustification of the ordinary instrumental variables estimator.

Instrumental variables estimators are designed to provide consistent parameter estimates for linear regression models when some covariates are correlated with the error term. We propose a new robust instrumental variables estimator (RIV) which is a natural robustification of the ordinary instrumental variables estimator (OIV). Specifically, we construct RIV using a robust multivariate location ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2014